Zum Inhalt springenZur Suche springen

HOME  |   TEAM  |  FORSCHUNG  |  LEHRE  |  PUBLIKATIONEN


Ausgewählte Publikationen

Scholten N, Hartmann M, Abts S, Abts L, Reinartz E, Altavilla A, Müller TJJ, Zeier J* (2024) In-depth analysis of isochorismate synthase-derived metabolism in plant immunity: identification of meta-substituted benzoates and salicyloyl-malate. J Biol Chem doi: 10.1016/j.jbc.2024.107667. Link: https://doi.org/10.1016/j.jbc.2024.107667

Yildiz I, Gross M, Moser D, Petzsch P, Köhrer K, Zeier J* (2023) N-hydroxypipecolic acid induces systemic acquired resistance and transcriptional reprogramming via TGA transcription factors. Plant Cell Environ 46: 1900-1920. Link: https://onlinelibrary.wiley.com/doi/10.1111/pce.14572

Zeier J* (2021) Metabolic regulation of systemic acquired resistance. Curr Opin Plant Biol 62: 102050. Link: https://www.sciencedirect.com/science/article/pii/S1369526621000509?via%3Dihub

Bauer S, Mekonnen DW, Hartmann M, Yildiz I, Janowski R, Lange B, Geist B, Zeier J*, Schäffner AR* (2021) UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. Plant Cell 33: 714-734. Link: https://academic.oup.com/plcell/article/33/3/714/6094431

Stahl E, Hartmann M, Scholten N, Zeier J* (2019). A role for tocopherol biosynthesis in Arabidopsis thaliana basal immunity to bacterial infection. Plant Physiol 181: 1008-1028- Link: https://academic.oup.com/plphys/article/181/3/1008/6044908

Hartmann M, Zeier T, Bernsdorff F, Reichel-Deland V, Kim D, Hohmann M, Scholten N, Schuck S, Bräutigam A, Hölzel T, Ganter C, Zeier J* (2018) Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173: 456–469. Link: https://www.sciencedirect.com/science/article/pii/S0092867418302265

Hartmann M, Kim D, Bernsdorff F, Ajami-Rashidi Z, Scholten N, Schreiber S, Zeier T, Schuck S, Reichel-Deland V, Zeier J* (2017) Biochemical principles and functional aspects of pipecolic acid biosynthesis in plant immunity. Plant Physiol 174: 124-153. Link: https://academic.oup.com/plphys/article/174/1/124/6116555

Bernsdorff F, Döring A-C, Gruner K, Schuck S, Bräutigam A, and Zeier J* (2016) Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell 28: 102-129. Link: https://academic.oup.com/plcell/article/28/1/102/6098191?login=true

Návarová H, Bernsdorff F, Döring A-C, Zeier J* (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24: 5123-5141. Link: https://academic.oup.com/plcell/article/24/12/5123/6098062

Griebel T, Zeier J* (2010) A role for b-sitosterol to stigmasterol conversion in plant-pathogen interactions. Plant J 63: 254-268. Link: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-313X.2010.04235.x

Attaran E, Zeier TE, Griebel T, Zeier J* (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21: 954-971. Link: https://academic.oup.com/plcell/article/21/3/954/6095304?login=true

Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive response. Proc Natl Acad Sci USA 98: 13454-13459. Link: https://www.pnas.org/doi/10.1073/pnas.231178298?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50: 1267-1280. Link: https://academic.oup.com/jxb/article/50/337/1267/530648


Gesamte Publikationsliste

Scholten N, Hartmann M, Abts S, Abts L, Reinartz E, Altavilla A, Müller TJJ, Zeier J* (2024) In-depth analysis of isochorismate synthase-derived metabolism in plant immunity: identification of meta-substituted benzoates and salicyloyl-malate. J Biol Chem doi: 10.1016/j.jbc.2024.107667

de Jager N, Shukla V, Koprivova A, Lyčka M, Bilalli L, You Y, Zeier J, Kopriva S, Ristova D (2024) Traits linked to natural variation of sulfur content in Arabidopsis thaliana. J Exp Bot 75:1036-1050

Wester P, Jakobi ASN, Brühn P, Makiej A, Lam ADT, Niedzwetzki-Taubert T, Hartmann M, Zeier J, Lunau K (2024) Non-flying mammal pollination in Massonia grandiflora. S Afr J Bot 165: 79-90

Löwe M, Jürgens K, Zeier T, Hartmann M, Gruner K, Müller S, Yildiz I, Perrar M, Zeier J* (2023) N-hydroxypipecolic acid primes plants for enhanced microbial pattern-induced responses. Front Plant Sci 14:1217771.

Yildiz I, Gross M, Moser D, Petzsch P, Köhrer K, Zeier J* (2023) N-hydroxypipecolic acid induces systemic acquired resistance and transcriptional reprogramming via TGA transcription factors. Plant Cell Environ 46: 1900-1920

Rawat AA, Hartmann M, Harzen A, Lugan R, Stolze SC, Forzani C, Abts L, Reißenweber S, Rayapuram N, Nakagami H, Zeier J*, Hirt H* (2023) OXIDATIVE SIGNAL-INDUCIBLE1 induces immunity by coordinating N-hydroxypipecolic acid, salicylic acid, and camalexin synthesis. New Phytol 237: 1285-1301

Hornbergs J, Montag K, Loschwitz J, Mohr I, Poschmann G, Schnake A, Gratz R, Brumbarova T, Eutebach M, Angrand K, Fink-Straube C, Stühler K, Zeier J, Hartmann L, Strodel B, Ivanov R, Bauer P (2023) SEC14-GOLD protein PATELLIN2 binds IRON-REGULATED TRANSPORTER1 linking root iron uptake to vitamin E. Plant Physiol 192: 504-526

Zeier J* (2021) Metabolic regulation of systemic acquired resistance. Curr Opin Plant Biol 62: 102050

Yildiz I, Mantz M, Hartmann M, Zeier T, Kessel J, Thurow C, Gatz C, Petzsch P, Köhrer K, Zeier J* (2021) The mobile SAR signal N-hydroxypipecolic acid induces NPR1-dependent gene expression and immune priming. Plant Physiol 186: 1679-1705

Bauer S, Mekonnen DW, Hartmann M, Yildiz I, Janowski R, Lange B, Geist B, Zeier J*, Schäffner AR* (2021) UGT76B1, a promiscuous hub of small molecule-based immune signaling, glucosylates N-hydroxypipecolic acid, and balances plant immunity. Plant Cell 33: 714-734

Alfonso E, Stahl E, Glauser G, Bellani E, Raaymakers TM, Van den Ackerveken G, Zeier J, Reymond P (2021) Insect eggs trigger systemic acquired resistance against a fungal and an oomycete pathogen. New Phytol 232: 2491-2505

Bruessow F, Bautor J, Hoffmann G, Yildiz I, Zeier J, Parker JE (2021) Natural variation in temperature-modulated immunity uncovers transcription factor bHLH059 as a thermoresponsive regulator in Arabidopsis thaliana. PLoS genetics 17: e1009290

Schnake A, Hartmann M, Schreiber S, Malik J, Brahmann L, Yildiz I, von Dahlen J, Rose LE, Schaffrath U, Zeier J* (2020). Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. J Exp Bot 71: 6444-6459

C Liu, KE Atanasov, N Arafaty, E Murillo, AF Tiburcio, J Zeier, R Alcázar (2020) Putrescine elicits ROS‐dependent activation of the salicylic acid pathway in Arabidopsis thaliana. Plant Cell Environ 43: 2755-2768

Zeier J*, Hartmann M (2020) Method for inducing acquired resistance in a plant. US Patent App. 16/763, 737

Stahl E, Hartmann M, Scholten N, Zeier J* (2019). A role for tocopherol biosynthesis in Arabidopsis thaliana basal immunity to bacterial infection. Plant Physiol 181: 1008-1028

Hartmann M, Zeier J* (2019) N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. Curr Opin Plant Biol 50: 44-57

Koprivova A, Schuck S, Jacoby RP, Klinkhammer I, Welter B, Leson L, Martyn A, Nauen J, Grabenhorst N, Mandelkow JF, Zuccaro A, Zeier J, Kopriva S (2019). Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc Natl Acad Sci USA 116: 15735-15744

Shanmugarajah K, Linka N, Gräfe K, Smits SHJ, Weber APM, Zeier J, Schmitt L (2019). ABCG1 contributes to suberin formation in Arabidopsis thaliana roots. Sci Rep 9: 11381.

Mur LAJ, Kumari A, Brotman Y, Zeier J, Mandon J, Cristescu SM, Harren F, Kaiser WM, Fernie AR, Gupta KJ (2019) Nitrite and nitric oxide are important in the adjustment of primary metabolism during the hypersensitive response in tobacco. J Exp Bot 70: 4571-4582.

Schneider T, Bolger A, Zeier J, Preiskowski S, Benes V, Trenkamp S, Usadel B, Farre EM, Matsubara S (2019) Fluctuating light interacts with time of day and leaf development stage to reprogram gene expression. Plant Physiol 179:1632-1657

Wang Y, Schuck S, Wu J, Yang P, Döring A-C, Zeier J*, Tsuda K* (2018) A MPK3/6-WRKY33-ALD1-pipecolic acid regulatory loop contributes to systemic acquired resistance. Plant Cell 30: 2480–2494

Hartmann M, Zeier J* (2018) L-Lys metabolism to N-hydroxypipecolic acid: an integral immune-activating pathway in plants. Plant J 96: 5–21

Hartmann M, Zeier T, Bernsdorff F, Reichel-Deland V, Kim D, Hohmann M, Scholten N, Schuck S, Bräutigam A, Hölzel T, Ganter C, Zeier J* (2018) Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity. Cell 173: 456–469

Gruner K, Zeier T, Aretz C, Zeier J* (2018) A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance. Plant J 94: 1064-1082

Joglekar S, Suliman M, Bartsch M, Halder V, Maintz J, Bautor J, Zeier J, Parker JE, Kombrink E (2018) Chemical Activation of EDS1/PAD4 Signaling Leading to Pathogen Resistance in Arabidopsis. Plant Cell Physiol 59:1592-1607

Hartmann M, Kim D, Bernsdorff F, Ajami-Rashidi Z, Scholten N, Schreiber S, Zeier T, Schuck S, Reichel-Deland V, Zeier J* (2017) Biochemical principles and functional aspects of pipecolic acid biosynthesis in plant immunity. Plant Physiol 174: 124-153

Liu S, Ziegler J, Zeier J, Birkenbihl RP, Somssich IE (2017) Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity. Plant Cell Environ 40: 2189-2206

Stahl E, Bellwon P, Huber S, Schlaeppi K, Bernsdorff F, Vallat-Michel A, Mauch F, Zeier J* (2016) Regulatory and functional aspects of indolic metabolism in plant systemic acquired resistance. Mol Plant 9: 662-681

Bernsdorff F, Döring A-C, Gruner K, Schuck S, Bräutigam A, and Zeier J* (2016) Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell 28: 102-129

Hilfiker O, Groux R, Bruessow F, Kiefer K, Zeier J, Reymond P (2014) Insect eggs induce a systemic acquired resistance in Arabidopsis. Plant J 80: 1085-1094

Sewelam N, Jaspert N, Van Der Kelen K, Tognetti VB, Schmitz J, Frerigmann H, Stahl E, Zeier J, Van Breusegem F, Maurino VG (2014) Spatial H2O2 signalling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Mol Plant 7: 1191-210

Vogel-Adghough D, Stahl E, Návarová H, Zeier J* (2013) Pipecolic acid enhances resistance to bacterial infection and primes salicylic acid and nicotine accumulation in tobacco. Plant Sig Behav 8: e26366

Gruner K, Griebel T, Návarová H, Attaran E, Zeier J* (2013) Reprogramming of plants during systemic acquired resistance. Front Plant Sci 4: 252

Zeier J* (2013) New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant Cell Environ 36: 2085–2103

Rostás M, Winter T, Borkowski L, Zeier J (2013) Copper and herbivory lead to priming and synergism in phytohormones and plant volatiles in the absence of salicylate-jasmonate antagonism. Plant Sig Behav 8: e24264

Shah J*, Zeier J* (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4: 30

Gupta KJ, Brotman Y, Segu S, Zeier T, Zeier J, Persijn ST, Cristescu SM, Harren FJM, Bauwe H, Fernie AR, Kaiser WM, Mur LAJ (2013) The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco. J Exp Bot 64: 553-568

Návarová H, Bernsdorff F, Döring A-C, Zeier J* (2012) Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Plant Cell 24: 5123-5141

Winter TR, Kaiser K, Borkowski L, Zeier J, Rostás M (2012) Heavy metal stress primes for herbivore-induced plant volatile emission. Plant Cell Environ 35: 1287-1298

Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novák O, Strnad M, Pfeifhofer H, van der Graaff E, Simon U, Roitsch T (2011) Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signalling. Plant Physiol 157: 815-830

Griebel T, Zeier J* (2010) A role for b-sitosterol to stigmasterol conversion in plant-pathogen interactions. Plant J 63: 254-268

Bonfig KB, Gabler A, Simon UK, Luschin-Ebengreuth N, Hatz M, Berger S, Muhammad N, Zeier J, Sinha AK, Roitsch T (2010) Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression Is part of the plant defense response. Mol Plant 6: 1037-1048

Attaran E, Zeier TE, Griebel T, Zeier J* (2009) Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21: 954-971

Attaran E, Rostás M, Zeier J* (2008) Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Mol Plant-Microbe Interact 21: 1482-1497

Griebel T, Zeier J* (2008) Light regulation and daytime dependency of inducible plant defences in Arabidopsis: phytochrome signalling controls systemic acquired resistance rather than local defence. Plant Physiol 147: 790-801

Mishina TE, Griebel T, Geuecke M, Attaran E, Zeier J* (2008) New insights into the molecular events underlying systemic acquired resistance. Paper 81 in: M Lorito, SL Woo, F Scala, eds, Biology of Plant-Microbe Interactions, Vol 6, International Society for Molecular Plant-Microbe Interactions, St. Paul, MN.

Mishina TE, Zeier J* (2007) Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Plant J 50: 500-513

Mishina TE, Zeier J* (2007) Bacterial non-host resistance: interactions of Arabidopsis with non-adapted Pseudomonas syringae strains. Physiol Plant 131: 448-461

Mishina TE, Lamb C, Zeier J* (2007) Expression of a nitric oxide degrading enzyme induces a senescence program in Arabidopsis. Plant Cell Environ 30: 39-52

Efetova M, Zeier J, Riederer M, Stingl N, Müller M, Hartung W, Hedrich R, Deeken R (2007) Central role of ABA in drought stress protection of Agrobacterium-induced tumours on Arabidopsis. Plant Physiol 145: 853-862

Mishina TE, Zeier J* (2006) The Arabidopsis flavin-dependent monooxygenase FMO1 is an essential component of biologically induced systemic acquired resistance. Plant Physiol 141: 1666-1675

Planchet E, Sonoda M, Zeier J, Kaiser WM (2006) Nitric oxide (NO) as an intermediate in the cryptogein-induced hypersensitive response - a critical re-evaluation. Plant Cell Environ 29: 59-69

Zeier J* (2005) Age-dependent variations of local and systemic defense responses in Arabidopsis leaves towards an avirulent strain of Pseudomonas syringae. Physiol Mol Plant Pathol 66: 30-39

Sonoda M, Kaiser W, Zeier J (2005) The role of NO in transgenic plants overexpressing nitric oxide synthase from Deinococcus radiodurans. Plant Cell Physiol 46: S190

Boccara M, Mills CE, Zeier J, Anzi C, Ederle D, Lamb C, Poole RK, Delledonne M (2005) Flavohemoglobin HmpX in Erwinia chrysanthemi confers nitrosative stress tolerance and attenuates the plant hypersensitive response during infection. Plant J 43: 226-237

Zeier J*, Delledonne M, Mishina T, Severi E, Sonoda M, Lamb C (2004a) Genetic elucidation of nitric oxide signaling in incompatible plant-pathogen interactions. Plant Physiol 136: 2875-2886

Zeier J*, Pink B, Mueller MJ, Berger S (2004b) Light conditions influence specific defense responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta 219: 673-683

Perazzolli M, Dominici P, Romero-Puertas MC, Zago E, Zeier J, Sonoda M, Lamb C, Delledonne M (2004) Arabidopsis non-symbiotic haemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16: 2785-2794

Nickstadt A, Thomma BPHJ, Feussner I, Kangasjärvi J, Zeier J, Loeffler C, Scheel D, Berger S (2004) The jasmonate-insensitive mutant jin1 shows increased resistance to biotrophic as well as necrotrophic pathogens. Mol Plant Pathol 5: 425-434

Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive response. Proc Natl Acad Sci USA 98: 13454-13459

Zeier J, Goll A, Yokoyama M, Karahara I, Schreiber L (1999) Structure and chemical composition of endodermal and rhizodermal/hypodermal cell walls of several species. Plant Cell Environ 22: 271-279

Zeier J, Ruel K, Ryser U, Schreiber L (1999) Chemical analysis and immunolocalisation of lignin and suberin in the endodermis and hypodermis/rhizodermis of developing maize (Zea mays L.) roots. Planta 209: 1-12

Zeier J, Schreiber L (1999) FTIR-spectroscopic characterisation of isolated endodermal cell walls. Planta 209: 537-542

Schreiber L, Hartmann K, Skrabs M, Zeier J (1999) Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J Exp Bot 50: 1267-1280

Zeier J (1998) Pflanzliche Abschlussgewebe der Wurzel: Chemische Zusammensetzung und Feinstruktur der Endodermis in Abhängigkeit von Entwicklung und äußeren Einflüssen. Dissertation, Julius-Maximilians-Universität Würzburg.

Zeier J, Schreiber L (1998) Comparative investigation of primary and tertiary endodermal cell walls isolated from the roots of 5 monocotyledoneous species: chemical composition in relation to fine structure. Planta 206: 349-361

Zeier J, Schreiber L (1997) Chemical composition of hypodermal and endodermal cell walls and xylem vessels isolated from Clivia miniata: identification of the biopolymers lignin and suberin. Plant Physiol 113: 1223-1231

Zeier J, Schreiber L (1996) Chemical composition of lipophilic biopolymers isolated from Agapanthus africanus (L.) Hoffmgg.: comparison between leaf cuticles and endodermal cell walls of roots. J Exp Bot 47: 56

Zeier J, Bollhagen R, Schmiedberger M, Lewitzki E, Schneider FW, Grell E. (1995) CD spectroscopy and structure prediction of a transmembrane protein  region. In: Merlin JC, Turell S, Huvenne JP (eds) Spectroscopy of biological molecules. Kluwer Academic Publisher, Dordrecht, 395-396

Verantwortlichkeit: